首页> 外文OA文献 >Learning Traffic as Images: A Deep Convolutional Neural Network for Large-Scale Transportation Network Speed Prediction
【2h】

Learning Traffic as Images: A Deep Convolutional Neural Network for Large-Scale Transportation Network Speed Prediction

机译:学习交通图像:一种深度卷积神经网络   大规模运输网络速度预测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper proposes a convolutional neural network (CNN)-based method thatlearns traffic as images and predicts large-scale, network-wide traffic speedwith a high accuracy. Spatiotemporal traffic dynamics are converted to imagesdescribing the time and space relations of traffic flow via a two-dimensionaltime-space matrix. A CNN is applied to the image following two consecutivesteps: abstract traffic feature extraction and network-wide traffic speedprediction. The effectiveness of the proposed method is evaluated by taking tworeal-world transportation networks, the second ring road and north-easttransportation network in Beijing, as examples, and comparing the method withfour prevailing algorithms, namely, ordinary least squares, k-nearestneighbors, artificial neural network, and random forest, and three deeplearning architectures, namely, stacked autoencoder, recurrent neural network,and long-short-term memory network. The results show that the proposed methodoutperforms other algorithms by an average accuracy improvement of 42.91%within an acceptable execution time. The CNN can train the model in areasonable time and, thus, is suitable for large-scale transportation networks.
机译:本文提出了一种基于卷积神经网络(CNN)的方法,该方法将流量作为图像进行学习,并以较高的精度预测大规模的全网络流量。时空交通动力学通过二维时空矩阵转换为描述交通流时空关系的图像。将CNN应用于图像的两个连续步骤是:抽象流量特征提取和全网络流量速度预测。通过以北京的二环路和东北交通网络这两个现实世界的交通网络为例,并与常用的最小二乘,k近邻,人工等四种主流算法进行比较,评估了该方法的有效性。神经网络,随机森林和三种深度学习架构,即堆叠自动编码器,递归神经网络和长期短期记忆网络。结果表明,该方法在可接受的执行时间内,平均精度提高了42.91%,优于其他算法。 CNN可以在合理的时间内训练模型,因此适用于大规模的运输网络。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号